Optimal Control for Battery Storage Using Nonlinear Models

Di Wu, Patrick Balducci, Alasdair Crawford, Vilayanur Viswanathan, and Michael Kintner-Meyer

Pacific Northwest National Laboratory

October 12, 2017

Outline

- Introduction
- Optimal charging control using linear and nonlinear models
- Case study
- Conclusion and future work

Background

Grid applications:

- Energy arbitrage
- Balancing service
- Capacity value
- Distribution system upgrade deferral
- Outage mitigation

Customer-side applications:

- Energy charge reduction
- Demand charge reduction

Motivation

- Optimal control is desired in order to best utilize the limited power and energy capacity of BSS
- Look-ahead optimization is required to capture interdependent operation over time
- Fixed power rating and constant round-trip or one-way efficiencies are used in existing optimal scheduling methods
 - inaccurate economic assessment results
 - infeasible operating schedule

Optimal scheduling with linear battery model

$$\sum_{k=1}^{K} \lambda_k p_k$$

$$-p_{\mathsf{max}}^- \leq p_k \leq p_{\mathsf{max}}^+$$
 , $\forall k=1$, \cdots , K

$$p_k^{ ext{batt}} = egin{cases} p_k/\eta^+ & ext{if } p_k \geq 0 \ p_k\eta^- & ext{if } p_k < 0 \end{cases}, \quad orall k = 1, \cdots, K$$

$$\Delta s_k = p_k^{\mathsf{batt}} \Delta T / E_{\mathsf{max}},$$

$$s_k = s_{k-1} - \Delta s_k,$$

$$\underline{S}_k \le s_k \le \overline{S}_k$$
,

$$\forall k=1$$
 , $\,\cdots\,$, K

$$\forall k=1$$
, \cdots , K

$$\forall k=1$$
 , \cdots , K

Proudly Operated by Battelle Since 1965

Limitations with existing linear battery model

- $[-p_{\min}, p_{\max}]$: incapable to model varying charging/discharging range
- ullet E_{max} : inaccurate to represent energy capacity
- η^+, η^+ : difficult to estimate overall efficiency and inaccurate to capture actual losses

Varying power capability and SOC change rate

1 MW/3.2 MWh vanadium redox BSS

Varying power capability and SOC change rate (cont.)

1 MW/3.2 MWh vanadium redox BSS

Optimal scheduling with nonlinear battery model

$$\mathbf{P}_2: \max_{p_k, s_k, \Delta s_k} \sum_{k=1}^K \lambda_k p_k$$

subject to:

Charging/discharging limit:
$$p_k \in \mathcal{P}_{s_k}$$
, $\forall k=1$, \cdots , K

SOC change:
$$\Delta s_k = f(p_k, s_k)$$
, $\forall k=1$, \cdots , K

Dynamics of SOC:
$$s_k = s_{k-1} - \Delta s_k$$
, $\forall k=1$, \cdots , K

SOC limits:
$$\underline{S}_k \leq s_k \leq \overline{S}_k$$
, $\forall k = 1, \dots, K$

Assumptions and inputs

- BSS: 1 MW/3.2 MWh vanadium redox BSS at Turner substation in Pullman in Washington State.
- Applications: energy arbitrage and energy imbalance reduction
- Price: The Mid-Columbia prices from 2011 to 2015

Economic performance comparison results

2 MW/6.4 MWh

Varying round-trip efficiency

BSS power and SOC

Conclusion and future work

Conclusion:

- Nonlinear BSS model better captures varying charging/discharging power capability and efficiencies.
- Optimal scheduling without accurate nonlinear BSS model could result in significant errors in benefits assessment, and even infeasible operation.

Future work:

 Apply the proposed method with nonlinear model for other grid and/or customer-side applications.

Thank you! Questions?

Di Wu di.wu@pnnl.gov

